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Classical DNA and RNA polymerase (pol) enzymes have
defined roles with their respective substrates, but several pols
have been found to have multiple functions. We reported previ-
ously that purified human DNA pol � (hpol �) can incorporate
both deoxyribonucleoside triphosphates (dNTPs) and ribonu-
cleoside triphosphates (rNTPs) and can use both DNA and RNA
as substrates. X-ray crystal structures revealed that two pol � resi-
dues, Phe-18 and Tyr-92, behave as steric gates to influence sugar
selectivity. However, the physiological relevance of these phenom-
ena has not been established. Here, we show that purified hpol �
adds rNTPs to DNA primers at physiological rNTP concentrations
and in the presence of competing dNTPs. When two rATPs were
inserted opposite a cyclobutane pyrimidine dimer, the substrate
was less efficiently cleaved by human RNase H2. Human XP-V
fibroblast extracts, devoid of hpol �, could not add rNTPs to a DNA
primer, but the expression of transfected hpol � in the cells
restored this ability. XP-V cell extracts did not add dNTPs to DNA
primers hybridized to RNA, but could when hpol � was expressed
in the cells. HEK293T cell extracts could add dNTPs to DNA prim-
ers hybridized to RNA, but lost this ability if hpol � was deleted.
Interestingly, a similar phenomenon was not observed when other
translesion synthesis (TLS) DNA polymerases—hpol �, �, or
�—were individually deleted. These results suggest that hpol � is
one of the major reverse transcriptases involved in physiological
processes in human cells.

Genetic integrity and stability of DNA are essential for the
maintenance of cell homeostasis and function. The genetic
material is well-preserved because of the coordination between
replication, repair, and cell cycle progression processes, and the
DNA polymerases (pols)3 are faithful key players in DNA rep-

lication as well as in the DNA repair process. Exposure to exog-
enous and endogenous agents can result in DNA lesions (1).
The so-called translesion synthesis (TLS) DNA polymerases (2,
3) have been characterized over the past 20 years and have been
of considerable interest because of their abilities to catalyze
DNA polymerization past many DNA adducts, which can be
can be an error-prone process.

Historically the DNA and RNA “worlds” were generally con-
sidered to be separate until the discovery of viral reverse tran-
scriptase (RT) in the 1970s (4). HIV-1 RT could copy RNA or
DNA (5), adding dNTPs. It has been shown that HIV-RT has
RNase H as well as DNA polymerase activity (6). Short RNAs
are also used in priming DNA synthesis opposite DNA tem-
plates, and eukaryotic pol � is one of the DNA polymerases that
plays this role (7). In addition, RNA can act as a template in
DNA double-strand repair of chromosomal DNA in yeast (8).

Ribonucleotides are the most common DNA “lesions,” even
more prevalent than abasic sites, and their presence leads to
genomic instability (9 –12). The Kunkel laboratory reported
that some replicative yeast and human DNA polymerases (�, �,
�) and yeast polymerases �, �, and � occasionally insert rNTPs
while copying DNA (9, 13–18). Another possibility for the
retention of the backbone sugars of RNA within DNA is the
incomplete removal of stretches of RNA from Okazaki frag-
ments during genome duplication (12). In Escherichia coli,
ribonucleotides can increase the leading strand fragmentation
during the replication process (19). The presence of ribonucle-
otides in DNA has been linked to systemic autoimmunity (20).

Embedded ribonucleotides in DNA can disturb the normal
biological processes such as transcription (21). Ribonucleotides
within DNA may interfere with DNA repair and TLS processes.
Ribonucleotides are also responsible for chromosomal instabil-
ity (22). The presence of (ribosyl) adenosine has been shown to
affect the repair of 8-oxo-7,8-dihydrodeoxyguanosine (8-
oxodG) by DNA glycosylases (23). Many of these inserted ribo-
nucleotides are removed by RNase H2, employing the ribonu-
cleotide excision repair (RER) pathway (10, 15, 24), and even
some DNA polymerases (e.g. pol �) (25). RNase H2 plays an
important role in maintaining genomic stability (26), and muta-
tions in any of the three subunits of human RNase H2 cause
Aicardi-Goutières syndrome, a human neurological disorder
with debilitating consequences (27, 28). RNase H is also nec-
essary for the removal of RNA/DNA hybrids such as R-loop,
which is responsible for replication fork collapse that ulti-
mately affects the DNA replication process (29 –31). RNase
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H– deficient systems are involved in the quasi-palindrome–
associated mutations (32). Toward this end, the effect of
cations on RNase H2 activity has been studied extensively
(33).

It has been reported that only making two amino acid substi-
tutions can add transcription (RNA polymerase) activity to
Thermococcus gorgonarius Tgo DNA polymerase, indicating
the delicate balance of these activities in polymerases (34).
However, another archaebacterial Family D DNA polymerase is
highly discriminating in selecting for dNTPs more than rNTPs
(35).

hpol �, a rather typical TLS DNA polymerase that we have
studied extensively (36 –40), is able to perform a variety of func-
tions we did not expect (41). The enzyme is capable of using
both RNA and DNA templates (and primers) to insert dNTPs
or rNTPs. The reverse transcription efficiency was almost as
high as DNA polymerase activity (40). hpol 	 has also been
reported to have “ribo” behavior (42), as does hpol 
 (40). These
results with ribonucleotides were unexpected and have led to a
series of hypotheses and questions about hpol � and other TLS
polymerases, extending our own previous biochemical and
structural studies on the TLS polymerases (43).

We previously showed that hpol �, as well as another Y family
DNA polymerase, hpol 
, can surprisingly use an entire RNA
strand as the primer during strand synthesis opposite a DNA
template without sacrificing base selectivity, even with a
cyclobutane pyrimidine dimer (CPD) or 8-oxodG in the tem-
plate (43). In addition, isolated hpol � was able to reverse tran-
scribe an RNA strand. Our new results show that hpol � adds
rNTPs to DNA primers at physiological rNTP concentrations,
even in the presence of dNTPs. We investigated whether CPD
lesions affect the removal of ribonucleotides by RNase H2. Our
results with cell extracts suggest that hpol � is one of the major
reverse transcriptases in human cells.

Results

dATP and rATP compete for incorporation by hpol � at the
ends of DNA primers opposite the unmodified base dT and a
CPD lesion

We previously demonstrated that purified human pol �
could incorporate rNTPs to extend primers, even beyond CPD
lesions (41). However, those studies were done at high concen-
trations of dNTPs and rNTPs (1 mM). In presence of physiolog-
ical concentrations of dNTPs or rNTPs (23, 44), hpol � also
extended the primers to full-length products (Fig. 1, A and B).

The incorporation depended on the concentration of the
dNTP or rNTP. With the rATP concentration fixed at 2 mM

and increasing the dATP concentration, the product bands
were shifted from primer � 2rA (i.e. two rNTPs incorpo-
rated) to primer � 3dA (i.e. three dNTPs incorporated) and
primer � 2dA regardless of whether incorporation occurred
opposite dT or the DNA lesion CPD (Fig. 1, C and D). Similar
product band shifts were also observed when the dATP con-
centration was 1 �M and the concentration of rATP was
varied (Fig. 1, C and D). Thus, dNTPs and rNTPs compete
for incorporation by hpol �.

RNase H2 recognizes and incises rA positioned opposite dT or
the CPD lesion

RNase H2 cleaves ribonucleotides from dsDNA or DNA/
RNA hybrids (24, 28). We examined the effect of incorporating
two ribonucleotides (rA) opposite a CPD lesion, and we previ-
ously observed that hpol � was capable of generating such a
structure (Fig. 1D).

The results showed that RNase H2 could cleave a DNA strand
containing two adjacent rAs, whether positioned opposite dTdT
or CPD. The activity for cleavage of rArA opposite CPD was
slightly lower (Fig. 2, A–C) as compared with the dTdT-containing
template (which showed two cleavage products, P1 and P2).

We measured initial burst rates of cleavage in pre–steady-
state kinetic assays (Fig. 2D). In line with the enzyme concen-
tration dependence study in Fig. 2C, the effect of linking the two
dT bases (i.e. CPD) was an �2-fold attenuation. The burst rate
was 33�1 opposite dTdT and 15�1 opposite CPD, and the
steady-state rate also reflected inhibition (Fig. 2D, inset).

hpol � in fibroblast cell extracts catalyze incorporation of
dNTPs and rNTPs onto a DNA/DNA duplex

To test our hypothesis that hpol � tolerates ribonucleotides dur-
ing strand extension in a physiological context, extracts from hpol
�–deficient (XP-V, cell line XP30RO) and corrected (XP-V � len-
tivirus-transfected hpol �, cell line XP30RO � Pol �) fibroblast
cells were prepared (45, 46) and examined with a DNA/DNA
duplex containing either an unmodified dT or a CPD in the tem-
plate. As expected, considerable primer degradation occurred
because of the multiple nucleases in the cells (data not presented).
To minimize degradation, a nonlabeled and unrelated ssDNA was
added to the reaction mixture at a relatively high concentration as
a competitor for the degradation by the nucleases (Fig. 3). In the
presence of dNTPs, the elongation patterns for DNA/DNA
(dTdT) with the XP-V (cell line XP30RO) and the corrected (cell
line XP30RO � Pol �) cell extracts were almost identical, indicat-
ing that other human DNA polymerases, instead of hpol �, played
the major roles in extending the primer (Fig. 3, B and C).

When a CPD-containing template (paired with a DNA primer)
was incubated with XP-V cell (cell line XP30RO) extracts, neither
dNTPs nor rNTPs were incorporated (Fig. 3E), consistent with our
knowledge that pol � is necessary to bypass the CPD lesion (1, 47,
48). However, with the corrected (XP-V � transfected hpol �, cell
line XP30RO � Pol �) cell extracts, not only dNTP but also rNTP
incorporation was observed (Fig. 3D, lanes 6–11), although with a
limited amount of extension.

hpol � is the major reverse transcriptase in human fibroblasts

Similar experiments were conducted with RNA/DNA and
DNA/RNA hybrid duplexes with the two types of fibroblast
extracts (Fig. 4). The presence of RNA strands caused the sub-
strates to be degraded more easily, probably by RNase H1 and
RNase H2 in the cell extracts, compared with the DNA/DNA
substrate (Fig. 4). To prevent degradation of targeted hybrids,
limited amounts of cell extracts and large amounts of compet-
itor oligomers (nonlabeled unrelated dsRNA/DNA hybrids and
ssDNA) were used in each reaction. Under these experimental
conditions, no rNTP insertion was observed for any of the sub-
strates (Fig. 4, A–D).
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Surprisingly, one dNTP insertion was observed for the DNA/
RNA substrate by the hpol �– corrected cell extracts (Fig. 4E,
lanes 5–7), and in the incubations with the XP-V cell extracts
no primer was extended (Fig. 4F). These results demonstrate
the critical role of hpol � in reverse transcription and indicate
that hpol � is a key reverse transcriptase in human cells.

hpol � is the major reverse transcriptase in HEK293T cells

To test the hypothesis that hpol � is the major reverse tran-
scriptase in other human cells, extracts from HEK293T cells
were also examined. TLS DNA polymerase-deficient cell lines,
deficient in hpols �, 	, 
, and �, respectively, were generated and
extracts were prepared (49). These cell extracts were capable of
extending a DNA primer opposite an undamaged DNA tem-
plate, although significant degradation was observed (Fig. 5A).

However, when a CPD lesion was present in the template, no
incorporation was observed in the cell extracts of hpol ��/� cells
(Fig. 5B), as expected from previous findings on the critical role of
hpol � in CPD bypass (1, 50). This result provides confirmation of
the phenotype of these cells with regard to the status of hpol �.

Extensive DNA degradation resulted when a DNA primer was
positioned opposite an RNA template. However, one-base exten-
sion of the primer was observed for all the cell extracts except hpol
��/� (Fig. 5C), confirming the important role of hpol � in its
reverse transcriptase mode in human cells.

Discussion

The concentration of nucleotides plays an important role in
cell regulation. It is very important to understand the biological
consequences of the physiological levels of free rNTPs. In gen-
eral, the concentrations of rNTPs are much higher than of
dNTPs (13) and lead to the incorporation of rNTPs during rep-
lication. In the genome, the embedded rNTPs are processed
either by RER (RNase H2, topoisomerase I) or postreplication
repair mechanisms (51–53). Ribonucleosides in DNA can also
be tolerated by multiple DNA polymerases, including the ones
belonging to the TLS polymerase family (15, 25).

Although we previously demonstrated that hpol � could incor-
porate rNTPs into DNA (41, 43), we now show that this occurs
under conditions in which dNTPs and rNTPs are present at

P

P+dA
P+2dA
P+3dA

P

P+2dA
P+2rA
P+3dA

P

P+rA

P+2rA

P

P+2dA
P+2rA

dATP, μM
rATP, mM

_
_____

1 2.510 25 _ 1 2.510 25
2 2 2 2 2

dATP, μM
rATP, mM

_____
_ 0.0

5
0.2

5
1 2 _ 0.0

5
0.2

5
1 2

1 1 1 11

C

P

P+dA

P+2dA
P+3dA

P

P+rA

P+2rA

P+3rA

P

P+2dA
P+2rA

dATP, μM
rATP, mM

_
_____

1 2.510 25 _ 1 2.510 25
2 2 2 2 2

_____
_

0.0
5
0.2

5
1 2 0.0

5
0.2

5
1 2

1 1 1 1
2

_
_
1_

_
dATP, μM
rATP, mM

D

1 432 5 6 987 10 11 12 13 14 15 16 17 18 19 20 21 22

dTdT^DNA
DNA

DNA
DNA

1 432 5 6 987 10 11 12 13 14 15 16 17 18 19 20

B

_

time

rNTPsdNTPs

P
1 2 3 4 5 6 7 8 9

dTdT^DNA
DNA

_

DNA
DNA

_ rNTPsdNTPs
1 2 3 4 5 6 7 8 910

time

A

dTdT

dTdT

Figure 1. hpol � can extend a DNA primer opposite an undamaged base or CPD by incorporation of dNTPs or rNTPs. hpol � (500 nM) and the
annealed duplex (5 �M) were incubated with physiological concentrations of dNTPs (dATP, 25 �M; dCTP, 30 �M; dGTP, 90 �M; and dTTP, 40 �M) or rNTPs
(ATP, 2 mM; CTP, 0.25 mM; GTP, 0.5 mM; and UTP, 0.5 mM) (44) for 5, 10, 30, and 60 min. A, DNA/DNA (dT). B, DNA/DNA (CPD). dATP and rATP competed
for incorporation by hpol � (100 nM) in the presence of different concentrations of dATP, rATP, or mixtures of the two. Incubations were done for 5 min.
C and D, the annealed substrates were (C) DNA/DNA (dT) (1 �M) and (D) DNA/DNA (CPD) (1 �M). See “Oligonucleotide substrates” under “Experimental
procedures” for the oligonucleotide sequences used.

Activities of human DNA polymerase �

J. Biol. Chem. (2019) 294(15) 6073–6081 6075



their physiological concentrations. We tested the possible
process and consequence of rNTP incorporation opposite
CPD lesions by hpol �. As expected, the incorporation of
rNTPs was observed, and hpol � can perform TLS opposite a
CPD lesion, utilizing rATP (Fig. 1). rNTPs and dNTPs com-
pete for incorporation by hpol �, and rNTPs can be incorpo-
rated in the presence of dNTPs. These results suggest that
the low sugar selectivity of the hpol � can promote the incor-
poration of rATP opposite a CPD lesion into the genome,
and it can possibly lead to the accumulation of rNTPs in
RNase H– deficient cells.

Our studies were done with purified hpol � (actually the hpol �
used is a short version containing the catalytic portion) and cell
extracts. Cell extracts have been utilized in studying a variety of
functions of DNA processing enzymes, in that all accessory pro-
teins should be present, and what we have observed is a reflection
of what is happening in the cells (and by extension, what is hap-
pening in human tissues). Carrying out the extension experiments
in cells is not feasible, in terms of recovering products to analyze.

Regarding the physiological relevance of our results, we have
already speculated on some of the possibilities but do not have

proof of any yet (43). One possibility is that hpol � can replace
hpol � or PrimPol to conduct translesion synthesis past CPD
lesions by extending an RNA primer at the origin of replication
or an Okazaki fragment. Another possibility is that hpol � could
use a transcript strand as a template to synthesize DNA at a
DNA double-strand break (43). However, we can only speculate
on those possible functions at this time.

The majority of human DNA pols have now been shown to
incorporate rNTPs (43). The selectivity varies considerably and
depends on the rNTP concentrations under cellular conditions.
Mitochondrial DNA (mtDNA) is known to contain ribonucle-
otides, which cannot be repaired by RER and may lead to the
mtDNA depletion syndrome (MDS) (54). Recent studies have
shown that the presence of ribonucleotides slows the speed of
mitochondrial DNA replication by pol � (55); ribonucleotides in
the DNA template do not slow replication but incorporation of
rNTPs slows replication. PrimPol, a primase-polymerase, is well-
known for its two distinct functions as a primase and a TLS poly-
merase. PrimPol is present in mitochondria, as well as in the
nucleus, and may play a crucial role in tolerance of rNTPs during
the replication of mtDNA (56). In the archaebacterium Pyrococcus
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abyssi, all three known DNA polymerases incorporate rNTPs, to
varying extents (57). P. abyssi also contains an RNase H2 to repair
such lesions.

The RNase H2 activity was affected by the presence of the
DNA lesion CPD, either the concentrations of RNase H2
needed for cleavage (Fig. 2C) or the pre–steady-state rate (Fig.
2D). These results indicate that the incorporation of rArA
opposite CPD lesions can decrease the efficiency of their
removal by RNase H2. One possibility which we cannot exclude
is that these circumstances might delay RER in cellular events
and can lead to replication stress and genomic instability.

Reverse transcriptases are important factors in the central
dogma of molecular biology. In eukaryotes, the self-replicating
stretches of genomes use reverse transcriptase for DNA repli-
cation, employing RNA as an intermediate. Joyce and Samanta
(58) have recently discovered that the RNA polymerase
ribozyme can catalyze reverse transcriptase activity. Apart
from rNTP incorporation, it is of interest to investigate the
detailed role of hpol � as a reverse transcriptase which catalyzes
the RNA-dependent polymerization of DNA and is responsible
for maintaining genetic information and translation machin-
ery. In this regard, we focused on the roles of hpol � under
cellular conditions. Our studies with human fibroblasts and
HEK293T cells indicate that hpol � is the major human reverse
transcriptase (Fig. 3). Our results suggest that there is a loss of
reverse transcriptase activity in an hpol �– deficient system
(Fig. 4). However, we observed incorporation of one nucleotide
opposite an RNA template in cell lines deficient in other TLS
DNA polymerases, pols 	, 
, and � (Fig. 5C), whereas hpol ��/�

cells did not incorporate any nucleotide opposite an RNA tem-
plate. These results clearly indicate the importance of hpol � as
a reverse transcriptase (Fig. 5C).

Human DNA pol � (hpol �) and terminal deoxynucleoside
transferase (TdT) both incorporate rNTPs to a large extent, and
this activity has been implicated in the repair of chromosome
breaks by nonhomologous end joining (59). We have previously
postulated that hpol � could utilize RNA primers at origins of
replication or facilitate DNA double-stranded break repair by
using RNA transcripts as primers (43).

In summary, hpol � can catalyze numerous reactions with
ribose-based molecules under cellular conditions. These find-
ings with human cell extracts provide potential directions for
understanding the consequences of rNTPs incorporation as
well as role of hpol � as a reverse transcriptase.

Experimental procedures

Oligonucleotide substrates

The oligonucleotide containing the CPD lesion was pur-
chased from TriLink BioTechnologies (San Diego, CA) and the
others were from Integrated DNA Technologies (Coralville,
IA). All of these oligonucleotides were purified by HPLC
(reversed phase) by the manufacturers. The primers 5�-FAM-
CGG GCT CGT AAG CGT CAT-3� and 5�-FAM-rCrGrG
rGrCrU rCrGrU rArArG rCrGrU rCrArU-3� were annealed
with template oligonucleotides in a 1:1 molar ratio of i) 5�-TCA
(CPD)A TGA CGC TTA CGA GCC CG-3� (CPD indicates cis-
syn thymine dimer), ii) 5�-TCA TTA TGA CGC TTA CGA
GCC CG-3�, and iii) 5�-TCA TGA TGA CGC TTA CGA GCC
CG-3�. In addition, 5�-rUrCrA rUrGrA rUrGrA rCrGrC
rUrUrA rCrGrA rGrCrC rCrG-3� were annealed with 5�-FAM-
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Figure 3. hpol � incorporates rNTPs opposite CPD lesion within human
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(XP30RO � Pol �) extracts were prepared, and each cell extract (1 mg
protein/ml) was tested with 1 �M native or CPD-containing primer/tem-
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dures” for the oligonucleotide sequences used.

Activities of human DNA polymerase �

J. Biol. Chem. (2019) 294(15) 6073–6081 6077



CGG GCT CGT AAG CGT CAT-3�. For the RNase H2 incision
assay, 5�-TCA (CPD)A TGA CGC TTA CGA GCC CG-3� and
5�-TCA TTA TGA CGC TTA CGA GCC CG-3� were annealed
with 5�-FAM-CGG GCT CGT AAG CGT CAT rArAT GA-3�
to form dTdT:rArA and CPD:rArA complexes.

Cell lines

hPol �–deficient XP-V (XP30RO) human skin fibroblasts and
the corrected cells (XP30RO � Pol �) were kindly provided by
Prof. James E. Cleaver (University of California, San Francisco) (45,
46). HEK293T cells deficient in the POLH, POLI, POLK, and
REV3L genes, which encode DNA pols �, 	, and 
 and the catalytic
subunit of hpol �, respectively, were produced previously using a
CRISPR-Cas9 genome editing method and characterized (49, 60).

Protein expression and purification

The catalytic core of WT hpol � (1– 432 amino acids) was
expressed in E. coli and purified as reported previously (40, 50).

Full-length RNase H2 was expressed in E. coli and purified as
described (61, 62). After chromatography on a HisTrap column
(GE Healthcare), dialysis, and chromatography on a heparin
column (GE Healthcare), the protein was eluted with a 40 mM

potassium phosphate buffer (pH 7.0) containing 350 mM NaCl,

1 mM dithiothreitol (DTT), 5% glycerol (v/v), and 0.5 mM

EDTA. The final product was aliquoted, flash frozen with liquid
N2, and stored at �80 °C.

Extension assays

hpol � was incubated with annealed 5�-FAM–labeled prim-
er-template substrates in the reaction buffer (40 mM Tris-HCl
(pH 7.5) containing 10 mM DTT, 0.1 mg/ml BSA, 5% glycerol
(v/v), 5 mM MgCl2, and 100 mM KCl) at 37 °C for 5 min before
adding the mixtures of nucleotides or a single nucleotide. Reac-
tions were conducted for the indicated times and stopped by
addition of a quench solution (95% formamide (v/v) and 10 mM

EDTA). The products were loaded onto 18% (w/v) denaturing
polyacrylamide gels, separated, and visualized using a Typhoon
system (GE Healthcare) (63, 64).

RNase H2 incision assay

A FAM-labeled dTdT:rArA or CPD:rArA duplex (1 �M; see
“Oligonucleotide substrates” under “Experimental procedures”
for the oligonucleotide sequences used) was incubated with
RNase H2 for varying times at 37 °C in the “incision buffer”: 40
mM Tris-HCl (pH 7.5) containing 1 mM DTT, 0.1 mg/ml BSA,
5% glycerol (v/v), 10 mM MgCl2, and 50 mM NaCl. Reactions
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Figure 4. Lack of hpol � leads to loss of reverse transcription activity in human cell extracts. A–F, extracts (0.48 mg protein/ml) of hpol �– deficient (XP-V)
and corrected cells were tested with DNA/DNA (A and B), RNA/DNA (C and D), and DNA/RNA (E and F), respectively (1 �M each substrate), in the presence of H2O
(negative control) and dNTPs (1 mM each nucleotide). An unrelated annealed dsDNA/RNA hybrid (poly dA/poly rU) and ssDNA (poly dA) (100 �M) were added
to prevent degradation. The reactions were conducted for 10, 30, and 60 min. See “Oligonucleotide substrates” under “Experimental procedures” for the
oligonucleotide sequences used.
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were stopped by the addition of 95% formamide (v/v) and 10
mM EDTA. For the pre–steady-state kinetic assays, 2 �M dTdT:
rArA or CPD:rArA complex and 437 nM RNase H2 (both in
incision buffer) were mixed in a KinTek RP-3 instrument
(KinTek Corporation, Austin, TX), allowing the reaction to
proceed for only a very short period time. The products were
separated on 18% (w/v) denaturing polyacrylamide gels and
visualized with a Typhoon system (GE Healthcare) (63, 64). The
program ImageJ was used for quantitation, and the pre–steady-
state kinetic assay data were fit to a burst equation: y � A(1-
e�kpt) � kssE0t, using GraphPad Prism software (GraphPad, San
Diego, CA), where A represents the apparent concentration of
the active form of the enzyme, kp is the burst rate, kss is the
steady-state rate, t is time, and E0 is the total enzyme concen-
tration (63, 64).

Extension assays with cell extracts

Xeroderma pigmentosum variant (XP-V) cells, the corrected
cell lines (XP-V � transfected hpol �–EGFP), HEK293T cells,
HEK293T cell-deficient cells (knocking out hpols �, 	, 
, and �,
respectively, by CRISPR-Cas9 genome editing method) were as
previously reported (49, 60). The cells were grown in Dulbecco’s
modified Eagle medium (plus 4.5 g/liter D-glucose and L-gluta-
mine) (Life Technologies) plus 10% FBS (v/v) (Life Technologies),
penicillin, and streptomycin at 37 °C (5% CO2, v/v).

For the preparation of cell extracts, 75% fluent cells were
trypsinized and washed with cold PBS solution. After resuspend-
ing cell pellets in hypotonic lysis buffer (10 mM Tris-HCl (pH 7.5)
containing 1 mM EDTA, 10% sucrose (w/v), 10% glycerol (v/v), 1
mM DTT, and a protease tablet (Mini cOmplete EDTA-free)), cells
were swelled for 20 min at 4 °C and lysed with a Dounce homoge-
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Figure 5. hpol �, instead of other TLS polymerases, plays a key role in reverse transcription in human cell extracts. Extracts of CRISPR-Cas9 knock-out
cell lines were made, and each cell extract (1.4 mg protein/ml) was incubated with 1 �M DNA/DNA (dG), DNA/DNA(CPD), or DNA/RNA (rG), respectively, in the
presence of a dNTP mixture (the concentration of each dNTP was 450 �M). An unrelated annealed dsDNA-RNA hybrid and ssDNA (100 �M concentrations) were
used to prevent degradation. The reactions were conducted for 10, 30, and 60 min. See “Oligonucleotide substrates” under “Experimental procedures” for the
oligonucleotide sequences used.
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nizer. NaCl was added to a final concentration of 0.15 M. Samples
were incubated for 10 min at 4 °C, sonicated, and centrifuged at
15,000 � g at 4 °C for 20 min. The supernatants were flash frozen
in liquid N2 and stored at �80 °C.

Cell extracts were mixed with annealed DNA substrates, or
DNA/RNA hybrids (1 �M) in 40 mM Tris-HCl buffer (pH 7.5)
containing 1 mM DTT, 0.1 mg/ml BSA, 5% glycerol (v/v), 5 mM

MgCl2, and 100 mM KCl. Single-stranded poly dA (100 �M) was
added to the reaction with DNA substrates and both 100 �M

poly dA and 100 �M hybrid poly dA/poly rU were added to the
reactions using DNA/RNA substrates. The reaction times were
10, 30, and 60 min. After quenching, the final products were
separated by denaturing polyacrylamide gels (63, 64).
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Note added in proof—Following acceptance of our manuscript, our
attention was called to a paper (Franklin, A., Milburn, P. J., Blanden,
R. V., and Steele, E. J. (2004) Human DNA polymerase-�, an A-T muta-
tor in somatic hypermutation of rearranged immunoglobulin genes, is a
reverse transcriptase. Immunol. Cell Biol. 82, 219–225) by one of the
authors, in which pol � had been reported to show activity in a product-
enhanced reverse transcriptase assay using a 4 mM mixture of dNTPs,
and a mechanism had been proposed. Reference to this work had been
included in an earlier draft of our manuscript but had been inadvertently
deleted in the final version. We believe that our biochemical and cell
extract work in Ref. 43 and here in this paper goes beyond this early
study in demonstrating the significance of pol � as a reverse transcrip-
tase, but apologize for the oversight.
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